Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1095

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Role of collision ionization of K-shell ions in nonequilibrium plasmas produced by the action of super strong, ultrashort PW-class laser pulses on micron-scale argon clusters with intensity up to 5 $$times$$ 10$$^{21}$$ W/cm$$^{2}$$

Skobelev, I. Yu.*; Ryazantsev, S. N.*; Kulikov, R. K.*; Sedov, M. V.*; Filippov, E. D.*; Pikuz, S. A.*; Asai, Takafumi*; Kanasaki, Masato*; Yamauchi, Tomoya*; Jinno, Satoshi; et al.

Photonics (Internet), 10(11), p.1250_1 - 1250_11, 2023/11

 Times Cited Count:0 Percentile:0(Optics)

It is challenging to clearly distinguish the impacts of the optical field and collisional ionization in the evolution of the charge state of a plasma produced when matter interacts with high-intensity laser pulses. In this work, time-dependent calculations of plasma kinetics are used to show that it is possible only when low-density gaseous targets with sufficiently small clusters are used. In the case of Ar plasma, the upper limit of the cluster radius was estimated to be $$R_0 = 0.1 mu$$m.

Journal Articles

Positron annihilation study of tungsten exposed to low-energy deuterium plasma

Hirade, Tetsuya; Furuta, Hikaru*; Torikai, Yuji*; Fujimura, Yuki; Michishio, Koji*

JJAP Conference Proceedings (Internet), 9, p.011106_1 - 011106_7, 2023/00

Positron annihilation lifetime (PAL) measurements by use of a positron source of $$^{22}$$Na were performed for polycrystalline ITER-grade tungsten samples exposed to low-energy deuterium plasma. The energy of deuterium plasma was low and then it was expected that it would affect just near-surface region. However, we obtained the longer mean positron annihilation lifetime in the tungsten samples exposed to the low-energy deuterium plasma than the virgin tungsten samples. Moreover, almost same longer values were obtained even on the other (no exposed) side of the samples, although the thickness of the samples were about 2 mm. Although, there has been no report of observation of defect formation by existence of hydrogen or deuterium in tungsten, the results indicated that deuterium existence in tungsten can be one of reasons of defects formation.

Journal Articles

Multi-scale turbulence simulation suggesting improvement of electron heated plasma confinement

Maeyama, Shinya*; Watanabe, Tomohiko*; Nakata, Motoki*; Nunami, Masanori*; Asahi, Yuichi; Ishizawa, Akihiro*

Nature Communications (Internet), 13, p.3166_1 - 3166_8, 2022/06

 Times Cited Count:11 Percentile:93.39(Multidisciplinary Sciences)

Turbulent transport is a key physics process for confining magnetic fusion plasma. Recent theoretical and experimental studies of existing fusion experimental devices revealed the existence of cross-scale interactions between small (electron)-scale and large (ion)-scale turbulence. Since conventional turbulent transport modelling lacks cross-scale interactions, it should be clarified whether cross-scale interactions are needed to be considered in future experiments on burning plasma, whose high electron temperature is sustained with fusion-born alpha particle heating. Here, we present supercomputer simulations showing that electron scale turbulence in high electron temperature plasma can affect the turbulent transport of not only electrons but also fuels and ash. Electron-scale turbulence disturbs the trajectories of resonant electrons responsible for ion-scale micro-instability and suppresses large-scale turbulent fluctuations. Simultaneously, ion-scale turbulent eddies also suppress electron-scale turbulence. These results indicate a mutually exclusive nature of turbulence with disparate scales. We demonstrate the possibility of reduced heat flux via cross-scale interactions.

Journal Articles

Spark plasma sintering of SiC/graphite functionally graded materials

Watanabe, Masashi; Yokoyama, Keisuke; Imai, Yoshiyuki; Ueta, Shohei; Yan, X.

Ceramics International, 48(6), p.8706 - 8708, 2022/03

 Times Cited Count:7 Percentile:75.06(Materials Science, Ceramics)

Previous studies have used various methods for sintering of SiC, carbon, and SiC/carbon functionally graded materials (FGM). However, no experimental studies on SiC/graphite FGM manufacturing using the spark plasma sintering (SPS) method have been reported. In this study, a SiC/graphite FGM specimen has been fabricated using SPS. The interface between the adjacent layers of the sintered specimen exhibits no apparent defects such as gaps or delaminations. The SiC and graphite phases in the specimen show no substantial change before and after sintering.

Journal Articles

Challenges of ab initio simulations to physics of burning plasma confinement

Watanabe, Tomohiko*; Idomura, Yasuhiro; Todo, Yasushi*; Honda, Mitsuru*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(3), p.152 - 156, 2022/03

Understanding of physical processes of particle, momentum, and thermal transports is essential for predicting the confinement performance of burning plasmas in ITER, which is targeting the scientific demonstration of magnetic confinement fusion. First principles based simulations on Fugaku disclosed physical mechanisms such as complex transport processes of multi-scale turbulence in deuterium-tritium plasmas and kinetic effects in energetic particle transport due to electromagnetic fluctuations. We promote further research and development of first principles based simulations towards the performance prediction of burning plasmas.

Journal Articles

Determination of alkali and alkaline earth elements in radioactive waste generated from reprocessing plant by liquid electrode plasma optical emission spectrometry

Yamamoto, Masahiko; Do, V. K.; Taguchi, Shigeo; Kuno, Takehiko; Takamura, Yuzuru*

Journal of Radioanalytical and Nuclear Chemistry, 327(1), p.433 - 444, 2021/01

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

A simple, practical, and reliable analytical method for determination of Na, K, Ca, Sr, and Ba by liquid electrode plasma optical emission spectrometry is developed. Appropriate emission lines for quantification, interferences from co-existing elements, and effect of measurement conditions with cell damage have been investigated. The spike and recovery tests using actual sample have been performed for method validation, and negligible sample matrix effect has been observed. Consequently, the method is successfully applied to several radioactive wastes. The obtained data have been agreed well with data from computer calculation and inductively coupled plasma optical emission spectrometry within 10% difference.

Journal Articles

Study of container using hybrid technique for sulfuric acid decomposition of thermochemical water-splitting iodine-sulfur process

Ioka, Ikuo; Iwatsuki, Jin; Kuriki, Yoshiro*; Kawai, Daisuke*; Yokota, Hiroki*; Kubo, Shinji; Inagaki, Yoshiyuki; Sakaba, Nariaki

Mechanical Engineering Journal (Internet), 7(3), p.19-00377_1 - 19-00377_11, 2020/06

A thermochemical water-splitting iodine-sulfur processes (IS process) is one of candidates for the large-scale production of hydrogen with high cost performance. Severe corrosive environment which is thermal decomposition of sulfuric acid exists in the IS process. A hybrid material with the corrosion-resistance and the ductility was made by a plasma spraying and laser treatment. The specimen had excellent corrosion resistance in the condition of 95 mass% boiling sulfuric acid. This was attributed to the formation of SiO$$_2$$ on the surface. To confirm the production characteristics of a container using the hybrid material, the container which has a welded part, a chamfer, a curved surface was experimentally made. There was no detachment in the plasma spraying and laser treated layer of the container after the laser treatment. It was confirmed that the construction of the container with high corrosion resistance in sulfuric acid was possible in the hybrid technique.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04

Journal Articles

Development of container using plasma sprayed and laser treated material for sulfuric acid decomposition of thermochemical water-splitting iodine-sulfur process

Ioka, Ikuo; Kuriki, Yoshiro*; Iwatsuki, Jin; Kubo, Shinji; Inagaki, Yoshiyuki; Sakaba, Nariaki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

A thermochemical water-splitting iodine-sulfur processes (IS process) is one of candidates for the large-scale production of hydrogen using heat from solar power. Severe corrosive environment which is thermal decomposition of sulfuric acid exists in the IS process. A hybrid material with the corrosion-resistance and the ductility was made by a plasma spraying and laser treatment. The specimen had excellent corrosion resistance in the condition of 95 mass% boiling sulfuric acid. This was attributed to the formation of SiO$$_{2}$$ on the surface. To confirm the production characteristics of a container using the hybrid material, the container which has a welded part, a chamfer, a curved surface was experimentally made. There was no detachment in the plasma spraying and laser treated layer of the container after the laser treatment.

Journal Articles

A Spectroscopic technique for analysis developed in the field of unclear energy

Kusaka, Ryoji

Bunko Kenkyu, 67(6), p.239 - 240, 2018/12

A spectroscopic technique for analysis developed by collaboration between Japan Atomic Energy Agency (JAEA) and Quantum and Radiological Science and Technology (QST) is discussed for readers outside the field of nuclear energy. This paper introduces a quantitative analysis for $$^{107}$$Pd radioisotope contained in a spent nuclear fuel by using laser-induced photoreduction and inductively coupled plasma mass spectrometry (ICP-MS). The importance and problems of quantitative analysis for radioisotopes in spent nuclear fuels are described, and the principle, advantages, and future applications of the spectroscopic technique are discussed.

Journal Articles

Observation of plasma density oscillation with doubled value of RF frequency in J-PARC RF ion source

Shibata, Takanori*; Shinto, Katsuhiro; Takagi, Akira*; Oguri, Hidetomo; Ikegami, Kiyoshi*; Okoshi, Kiyonori; Nammo, Kesao*; Naito, Fujio*

AIP Conference Proceedings 2011, p.020008_1 - 020008_3, 2018/09

 Times Cited Count:5 Percentile:91.75(Physics, Applied)

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07

JAEA Reports

Cutting operation of simulated fuel assembly heating examination by AWJ

Abe, Yuta; Nakagiri, Toshio; Watatani, Satoshi*; Maruyama, Shinichiro*

JAEA-Technology 2017-023, 46 Pages, 2017/10

JAEA-Technology-2017-023.pdf:8.01MB

This is a report on Abrasive Water Jet (AWJ) cutting work carried out on specimen, which was used for Simulated Fuel Assembly Heating Examination by Collaborative Laboratories for Advanced Decommissioning Science (CLADS) molten core behavior analysis group in February 2016. The simulated fuel assembly is composed of Zirconia for the outer crucible/simulated fuel, stainless steel for the control blade and Zircaloy (Zr) for the cladding tube/channel box. Therefore, it is necessary to cut at once substances having a wide range of fracture toughness and hardness. Moreover, it is a large specimen with an approximate size of 300 mm. In addition, epoxy resin has high stickiness, making it more difficult to cut. Considering these effects, AWJ cutting was selected. The following two points were devised, and this specimen could be cut with AWJ. If it was not possible to cut at one time like a molten portion of boride, it was repeatedly cut. By using Abrasive Suspension Jet (ASJ) system with higher cutting ability than Abrasive Injection Jet (AIJ, conventional method) system, cutting time was shortened. As a result of this work, the cutting method in Simulated Fuel Assembly Heating Examination was established. Incidentally, in the cutting operation, when the cutting ability was lost at the tip of the AWJ, a curved cut surface, which occurs when the jet flowed away from the feeding direction, could be confirmed at the center of the test body. From the next work, to improve the cutting efficiency, we propose adding a mechanism such as turning the cutting member itself for re-cutting from the exit side of the jet and appropriate traverse speed to protect cut surface.

Journal Articles

Evaluation and demonstration of cutting the fuel assembly heating examination by AWJ

Maruyama, Shinichiro*; Watatani, Satoshi*

Mitsui Sumitomo Kensetsu Gijutsu Kenkyu Kaihatsu Hokoku, (15), p.107 - 112, 2017/10

It is essential to estimate characteristics and forms of fuel debris for safe and reliable removing at the decommissioning of the Fukushima Daiichi Nuclear Power Plant (1F). For the estimation, melting behavior of fuel assembly in the accident is being researched. To proceed the research, the fuel debris were need to cut, and the abrasive water jet (AWJ) which had enough results for cutting ceramic material or mixed material of zirconium alloy and stainless. The test results demonstrated that AWJ could cut the fuel assembly and accumulated the cutting data which will be subservient when removing the fuel debris in future.

Journal Articles

High density plasma calculation of J-PARC RF negative ion source

Shibata, Takanori*; Asano, Hiroyuki; Ikegami, Kiyoshi*; Naito, Fujio*; Nammo, Kesao*; Oguri, Hidetomo; Okoshi, Kiyonori; Shinto, Katsuhiro; Takagi, Akira*; Ueno, Akira

AIP Conference Proceedings 1869, p.030017_1 - 030017_11, 2017/08

 Times Cited Count:4 Percentile:85.09(Physics, Applied)

From September 2014, operation of Cs-seeded, multi-cusp, Radio Frequency (RF), hydrogen negative ion source (J-PARC source) has been started. The operation for 1,000 hours of J-PARC source has been achieved with H$$^{-}$$ beam current 45 mA and duty factor of 1.25 % (0.5 msec and 25 Hz). In the present study, mechanisms of hydrogen plasma ramp-up and H$$^{-}$$ production/transport processes in the steady state (which lasts for few 100 us) are investigated by numerical modeling for RF plasma. In the simulation, charged particle (e, H$$^{+}$$, H$$_2^{+}$$, and Cs$$^{+}$$) transport, time variations of inductive and capacitive electromagnetic field, collision processes between charged and neutral (H, H$$_{2}$$) particles are solved simultaneously. The model is applied to KEK parallel computation System-A with 32 nodes and 256 GB memory in order to solve high density RF plasma up to around 10$$^{18}$$ m$$^{-3}$$ with adequate statisticity. In the presentation, time variations of plasma density distributions and average energy are shown with electromagnetic field variations.

Journal Articles

Development of non-transfer type plasma heating technology to address CMR behavior during severe accident with BWR design conditions

Abe, Yuta; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

Journal Articles

Measurement of the relative yields of $$psi(2S)$$ to $$psi(1S)$$ mesons produced at forward and backward rapidity in $$p+p$$, $$p+$$Al, $$p+$$Au, and $$^3$$He+Au collisions at $$sqrt{s_{NN}}=200$$ GeV

Adare, A.*; Hasegawa, Shoichi; Imai, Kenichi; Sako, Hiroyuki; Sato, Susumu; Tanida, Kiyoshi; PHENIX Collaboration*; 361 of others*

Physical Review C, 95(3), p.034904_1 - 034904_10, 2017/03

AA2017-0047.pdf:0.58MB

 Times Cited Count:15 Percentile:75.85(Physics, Nuclear)

Journal Articles

Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity $$p$$ + Au collisions at $$sqrt{s_{NN}}=200$$ GeV

Aidala, C.*; Hasegawa, Shoichi; Imai, Kenichi; Sako, Hiroyuki; Sato, Susumu; Tanida, Kiyoshi; PHENIX Collaboration*; 304 of others*

Physical Review C, 95(3), p.034910_1 - 034910_10, 2017/03

AA2017-0048.pdf:0.55MB

 Times Cited Count:39 Percentile:94.4(Physics, Nuclear)

Journal Articles

Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

Suzudo, Tomoaki; Hasegawa, Akira*

Scientific Reports (Internet), 6, p.36738_1 - 36738_6, 2016/11

 Times Cited Count:27 Percentile:64.56(Multidisciplinary Sciences)

Modeling of the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the first principles method combined with kinetic Monte Carlo to indicate a mechanism to mitigate the effect of radiation by adding particular solute elements that change the migration dimension of interstitials in W crystals. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose SIAs have one-dimensional (1D) motion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications.

Journal Articles

High dynamic range multi-channel cross-correlator for single-shot temporal contrast measurement

Kon, Akira; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Ogura, Koichi; Mori, Michiaki; Sakaki, Hironao; Kando, Masaki; Kondo, Kiminori

Journal of Physics; Conference Series, 717, p.012103_1 - 012103_4, 2016/05

 Times Cited Count:2 Percentile:66.84(Physics, Applied)

1095 (Records 1-20 displayed on this page)